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1. INTRODUCTION 

The need for coat-effective and reliable space transportation systems has been accentu- 

ated with increasing world-wide competition to exploit space applications and the urgency 

of military payloads. The use of aerodynamic rather than propulsive forces to perform 

various types of orbit transfer can provide significant advantages in increased payload, r e  

duced fuel weight and reduced launch activities. The economic superiority of aeroassisted 

orbital transfer over all-propulsive maneuvering has been demonstrated through various 

studies [1]-[13]. 

In the typical aeroassisted coplanar orbital transfer shown in F * m e  1, the vehicle m 

initially in high earth orbit at radius, t l ,  when a retro impulse, say AV,, brings the vehicle 

into an elliptical orbit with perigee, say rp. Whereas ideally, rp would be the top of the 

atmosphere, for practical reasone it would be selected somewhere h i d e  the atmoephere in 

a realistic aeroasaisted orbital transfer maneuver. 

The portion of the orbital transfer of particular interest in this study is the atmospheric 

flight portion which starts ae the vehicle enters the atmoephere at a radial distance from 

the center of the earth, say to. By appropriate modulation of the lift and drag forces, 

the vehicle reduces its speed to a level corresponding to its final lower orbit radius, t 2 .  

The atmoepheric trajectory also determines the heating rate which the vehicle skin will be 

subjected to. Thus, it is necessary to select a trajectory which does not subject the vehicle 

to temperature levela higher than can reasonably be accommodated by the vehicle skin. 

At atmoepheric exit, the vehicle enters an elliptical orbit with apogee at t 2 .  A circularizing 

impulse, AVz, at the apogee puts the vehicle in the desired final orbit. 

Aeroaseisted coplanar orbit transfer has been studied in [4] where it is determined that 

a zero flight path angle at atmospheric exit results in the minimal recircularizing impulse, 



AV2, for single impulse maneuvers. Furthermore, the sensitivity of AV2 to variations in 

the flight path angle is seen to be high. 

This result stresses the importance of achieving the appropriate conditions at atm+ 

spheric exit. However, off-nominal atmospheric conditions can produce significant pertur- 

bations in the actual trajectory of the vehicle. Significant variations in the atmospheric 

density profile have been observed in shuttle flights. Such variations from the standard at- 

mosphere can result in deviations from the nominal trajectory and perturb the atmospheric 

exit conditions. Since stochastic nonlinear optimization techniques are not currently prac- 

tical, an alternative is to define an optimal control problem which can generate optimal 

trajectories from the current actual state to the desired 6nal state at atmospheric exit, and 

thus adjust to off-nominal atmospheric conditions. This strategy requires fast and reliable 

algorithms for solving tiwepoint-boundary-value problems (TPBVP) , which requires fur- 

ther investigation beyond the current study. However, the ability to update the trajectory 

would reault in small rather than large variations in the exit parameters. 

In Section 2, a reduced order model of the equations of motion is developed. This 

second order model uses the vehicle’s total energy as the independent variable instead of 

time. Reduction of the order haa the advantage that it reduces the order of the TPBVP 

to be solved. Furthermore, it recognizes that coplanar orbit transfer is a problem of 

transferring the vehicle from one energy level to another. The choice of the control value 

is intuitively more a matter of how much energy the vehicle must lose rather than what 

time it is. 

In Section 3, an optimal control problem to transfer the vehicle from an initial state 

to a specified final state! is formulated. The necessary conditions are obtained in Section 

4, and optimal trajectories are simulated in Section 5. 
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2. EQUATIONS OF MOTION 

. 

In this section, we will develop a set of equations describing the motion of the aero- 

assisted orbital vehicle center of mass using total energy as the independent variable rather 

than time. These equations of motion will then be used in the formulation of an optimal 

control problem, where the control will be defined as a function of total energy. As a result, 

although the problem is solved in an open-loop mode, the control is defined in terma of 

energy, so that the control value is selected according to the total energy of the vehicle. 

The equations of motion which will be used describe the dynamics of the c.g. of 

the vehicle in flight within the atmosphere with no propulsive forces used. The general 

equations of motion for this case are given by 

+ = v a i n 7  

+(w2t /v)  cod d(cos 7 cod 4 + sin 7 sin 4 cod 11,) 

(3) 

(4) 

(5) 
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Lsinp V 
mVcosy r 

?j= - -ccosrcosf$tanf$ 

+ 2w(tanycos+sin+ - sin4) - (w2r/Vcosr)sin4cos4cos+ (6) 

where 6 is the longitude, 4 is the latitude, r is the distance from the center of the earth 

to the vehicle center of gravity, V is the velocity with respect to the earth, 7 is the local 

flight path angle, + is the track angle, p is the bank angle, w is the angular velocity of the 

earth, m is the mass of the vehicle, D is the drag force and L is the lift force acting on the 

vehicle. 

For the case of coplanar orbital transfer considered here, the general equations of 

motion can be simplified significantly. First, we assume that a lateral regulator control 

system is maintaining the vehicle’s lateral variables near zero by accommodating pertur- 

bations due to atmospheric and other effects. This implies the ability to bank the vehicle 

by small amounts to correct for small perturbations in the lateral variables. Taking the 

initial heading as zero, the latitude, 4, remains constant and can also be taken as zero. 

The remaining equations of motion are (l), (3), (4) and (5). With the latitude/longitude 

directions as defined above, the motion of the vehicle ie along zero-latitude and the posi- 

tion of the vehicle is determined by its longitude and altitude. In the current study, the 

longitude of the vehicle as a function of time is not of interest, and can be eliminated from 

the model since it does not impact the motion. 

Rewriting the remaining equations of motion, we obtain 

i = Vsiny 

L + = a + (f - -&) cosy 
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where the angular rotation of the earth has been neglected and a Newtonian gravitational 

model is used, Le., 

P g = -  
r2 

in which the gravitational acceleration, g, is expressed in t e r m  of the inverse square law 

with j i  being the product of the gravitational constant and the mass of the earth. 

Furthermore, we assume a parabolic drag polar form between the coefficients of drag 

and lift: 

S 
m 

s = -  , 

where p is the atmospheric density, and S ia the vehicle’s effective surface area for aero- 

dynamic forces, CD, is the zero-lift or minimum coefficient of drag and K is a coefficient 

principally depending on the vehicle configuration shape. 

Energy ae Independent Variable. 

In the model described above, the motion variables r ,V and 7 are the dependent 

variables; while the time, t, is the independent variable. However, it is possible to use 

a different independent variable, if some advantages accrue from a different choice. Of 

course, the independent variable cannot be selected arbitrarily. Knowledge of the indepen- 

dent variable must uniquely determine the value of each of the dependent variables. For 

5 



example, altitude cannot be used as the independent variable, since in a standard maneu- 

ver, the vehicle crosses the same altitude twice, once when dipping into the atmosphere 

at a high velocity and again on its way up to the new orbit at a lower velocity. Thus, 

knowing the altitude does not uniquely determine the velocity of the vehicle. 

In the following, we will develop a new model of the motion of the vehicle using its 

total energy, potential plus kinetic, as the independent variable. First note that energy 

is allowable as an independent variable because it is monotonic. Since the aeroasaisted 

orbital transfer vehicle (AOTV) will use no propulsive forces during its maneuver inside 

the atmosphere, the vehicle’s total energy monotonically decreases with time due to at- 

mospheric drag. Thus, energy is a one-bone and invertible function of time; 80 that the 

vehicle has a given energy level only once during the maneuver. Knowing the vehicle’s 

energy uniquely determines the value of the dependent variables. 

The advantages of using energy as the independent variable are *fold. First, it 

provides a technique of model order reduction analytically without any approximation. In 

optimal control problems, reducing the model order by one reduces the order of the twe 

point-boundary-value problem which must be solved by two, since the cestate equations 

are also reduced by one. 

The second advantage is that coplanar orbit transfer intuitively is a problem of energy 

management; i.e., it is a problem of going from a high energy level to a lower energy level 

by losing some energy to the atmosphere without overheating. Thus, deciding what control 

value to use is intuitively more a question of how much energy the vehicle has rather than 

what time it is. 

Define the vehicle’s total energy, potential plus kinetic, say E as 

6 



Differentiating E with respect to time and combining with the equations of motion, 

we obtain 

As expected, the time rate of change of the vehicle's energy is work done by the 

aerodynamic forces acting on it; i.e., the force multiplied by the velocity in the direction 

of the force. 

When performing an aeroassisted coplanar orbit transfer, usually the initial energy 

is higher than the final energy. Thus, during the typical maneuver, E progresses in the 

negative direction, whereas the standard variational equations for optimal control problems 

assume the independent variable progressing in the poeitive direction. To use the standard 

equations, we simply make the change of variablea 

e = - E l m  , L = - E / m = V D / m  (18) 

Now, if the vehicle's energy and its speed are both known, then its altitude is uniquely 

determined from the potential energy. Thus, it can be found that 

P V 2  
r ' 

Using the chain rule and (19), t Le equations of mowion (7), (8), (9) can be expressed 

in term of the speed and Eight path angle viewed as functions of energy. After some 

manipulation, we obtain 



where the prime ' ' denotes the derivative with respect to e; i.e., 

d v  V I =  - 
de 9 

d7 
71 = - 

de (23) 

It is seen that the second order model in (20), (21) is sufficient to describe the motion 

of the vehicle. Note that this reduction in the order of the model has been obtained without 

any approximation, by simply using energy as the independent variable. 

The atmospheric density, p, is a function of altitude. For the purpose of the optimiza- 

tion study, the usual exponential form will be used to describe the atmospheric density 

profile with altitude. Thus, 

where TE is the average earth radius and p the scale height of the exponential atmosphere. 

Since the radial distance, r, is no longer a state variable, the altitude must be expressed 

in terms of the model variablee. 

Thus, the two differential equations (20), (21), the quadratic drag polar (12) and the 

atmogpheric density (24), (26) form a reduced order model describing the motion of the 

vehicle center of gravity. 
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3. THE OPTIMIZATION PROBLEM 

The maneuver considered is to transfer the AOTV from high earth orbit to low earth 

orbit by grazing through the atmosphere to lose energy. While in high orbit at a radial 

distance of t l ,  a tangential retro impulse, AVl, is applied, which puts the vehicle into an 

elliptical orbit with perigee at rp. While ideally, tp would be at the top of the atmosphere, 

say t,, realism considerations require a lower altitude which would ensure that the vehicle 

dips into the atmosphere sufficiently to loose the required energy within a reasonable period 

of time. The vehicle then exits the atmosphere at a lower speed of Vt and flight path angle 

7~ starting an elliptical orbit with apogee, r2. When the vehicle reaches t2, a tangential 

circularizing impulse, AV2, bringa it to the desired circular orbit. 

It is well-known that in comparison to the all-propulsive orbit transfer, the aeroassisted 

maneuver requires significantly less fuel to achieve the same orbital transfer (41. Also note 

that although AV1 is the larger impulse, the variability of this impulse is quite small; 

i.e., the variation in AV1 which achieve an orbit with a perigee anywhere within the 

atmosphere is quite small. On the other hand, the variation in AV2 with variations in 

the exit flight path angle and velocity is significant. Furthermore, the minimum AV, 

impulse occurs when the exit flight path angle, rt, is zero, assuming a single impulse from 

atmospheric exit to the low earth orbit [4]. Therefore, it is highly desirable to achieve the 

needed exit conditions to reduce the variability in the amount of fuel necessary to ensure 

the maneuver. 

The atmapheric portion of the orbital transfer is the part of inte-t in this study. 

An important consideration during the atmospheric maneuver is to maintain the vehicle’s 

skin temperature at acceptable levels. This is directly related to the heating rate produced 

by the atmospheric conditions. On the other hand, off-nominal atmospheric conditions can 

produce significant perturbations. Although nonlinear stochastic optimization ia the most 
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direct approach to the treatment of random atmospheric phenomena, it is beyond the 

available resources of the current study. Instead, we will define a deterministic optimal 

control problem which, if necessary, can be solved on-line to adjust to changing atmospheric 

conditions, so that the guidance trajectory may change with varying atmospheres but still 

achieve the desired exit conditions. Alternatively, the trajectories may be computed off- 

line and stored, although stringent storage requirements would be placed on the on-board 

computer. 

To accommodate the various objectives and constraints discussed, an optimal control 

problem may be posed as follows. Since the exit conditions largely determine the fuel 

requirements, the final flight path angle and the speed are considered to be k e d  by the 

low earth orbit radius, t 2 .  On the other hand, the initial conditions are determined by 

the high earth orbit radius, t l .  The high entry speed, vh, and fight path angle, 7h, 

are a h  considered to be b e d  by the particular maneuver. The main objective during 

the atmospheric maneuver, beyond achieving the atmospheric exit conditions, is to avoid 

overheating the vehicle skin. To a h e r  extent, it may be of interest to avoid excessive 

shear stress on the skin of the vehicle. To achieve these objectives, the cost function is 

selected as a linear combination of the square of the heating rate and the drag force acting 

on the skin integrated Over the entire atmospheric maneuver. 

The control is the coefficient of lift, CL. The coefficient of drag, Co, is determined 

by Cs through (12). Both positive and negative values are allowed for CL. Whether a 

negative value of l i i  is obtained by a negative pitch angle or by a positive pitch angle 

with the vehicle flying upside down would depend on the vehicle and implementation 

consider at ions. 

Now, the vehicle speed at atmospheric entry determines the initial energy per mass, 

say el .  Alternatively, the high earth orbit energy diminished by the impulsive energy 

of AV1 also determines the energy at atmospheric entry. Similarly, let the energy at 

atmospheric exit correspond to ep. Recall that e is the negative of the energy per unit 
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masts, so that e1 < e2. Thus, 

v ( e 2 )  =vt 9 'Y(e2) =7t 

The heating rate is computed using the expression 

Q = A p h V S  , A = 3 . 0 8 ~  lo-' . (29) 

A number of different expressions are available for the heating rate which in general, would 

depend on further atmospheric variables. Since only the trenda are of interest here, (29) 

is considered sufficient. 

We will use a coet function which ia a linear combination of the integrated heating 

rate squared and the drag; i.e., 

where t 1  and t a  are the initial and final times, respectively. 

Since the independent variable is e, J must be expressed in terms of e. From (18), 

dt 1 
& V D l m  
- =  

Using the chain rule and manipulating, 

where 

, E2 = c 2  . 2 A2c1 
s E1 = (33) 
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It is interesting that while the final time, t 2 ,  in the original problem would be free, in 

the energy model the final energy is fixed. Since the initial and final (or desired) orbits are 

known, the amount of energy which must be expended in the atmosphere is also known,, 

although the duration of the atmospheric maneuver is not fixed, and is a part of the 

optimization. 

Thus, the problem of obtaining aeroassisted coplanar orbit transfer trajectories can 

be posed as the optimal control problem of minimizing the coat function, J ,  in (32) while 

satisfying the constraints (20), (21), (27) and (28). 
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4. NECESSARY CONDITIONS 

Using standard variational calculus texts [14], [15], it is possible to determine con- 

ditions which are necessary for optimality. Following this approach, the Hamiltonian, U, 
is 

where p is the co-state vector defined by 

Substituting (32), (20) and (21) into (34), the Hamiltonian for the problem is found 

to be 

The differential equations for the co-state vector can be obtained from (35)-(39). 
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Note that the atmospheric density, p, is a function of V and e; so that the rate of 

change of p with V directly enters the co-state equation for p v .  

(42) 
a 1 4 p v  1 -{-}=- av P(V, e) P(V2 + 2 4 2  P(V, e )  

From Pontryagin's minimum principle, the minimal coat occun when the Hamiltonian 

is minimized within the allowable control set while the state and c+state are on the 

optimal trajectory; i.e., minimize U(V* ,7* ,Cr , ,P ; ,p~ ,c )  over the allowable set of CL'S. 

First consider the optimal CL with no constraints on Ct. 

where hi and hi are (37) and (38) respectively, evaluated on the optimal trajectory. 

Setting (43) to zero results in 

Note that the negative sign in front of the discriminant always produces a negative CL, 

while the positive sign results in a positive CL value. Observation of (36) shows that the 

minimal U occurs when 
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since CD is always posiive. It follows that the roo. which corresponds to .he minimum 

given by 

9 

Now, suppose that CL is limited to be within (CLmin, C ~ m o z ] ,  where CLmet is positive 

and CLmin is negative. The minimal CL for this case is easily obtained by analyzing the 

gradient a # / a  CL in (43). Rewriting this gradient in the form 

(47) 
au (Kh;)Ci  + ( 2 K h ; ) c ~  - haCD0 - = -  

aCL c2, 
Suppose h; is negative, then the gradient has two zeroes, CL- and CL+ corresponding 

to the sign selected in (44). Note that Ct- is negative while CL+ is poeitive. The basic 

shapes of the gradient and the Hamiltonian lead to a value of Ci 2 0 which is limited by 

CLmot. A similar analysis for the case of hlf being poeitive resdta in 

CLmin I CL I CLmas 

Ci= C t m a t ,  CL > C ~ m a o  (48) ICL'  CLmin, CL CLmin 

where CL is given by (46). 

The necessary conditions for the optimal trajectory are given by the state equations 

(20), (21), the cwta te  equatiom (40), (41), and the control equations (46), (48), with the 

initial and h a l  state satisfying (27) and (28). Thus, the necessBIy conditio- specify the 

two-point-boundary-value problem given above. The sdiciency of these conditions is not 

treated here. 
\ 
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5. NUMERICAL RESULTS 

To obtain the optimal guidance trajectories resulting from the optimal control problem 

posed, the necessary conditione were solved using a standard two-point-boundary-value 

problem (TPBVP) solver. The TPBVP solutions were obtained with shooting techniques 

I161 using the OPTSOL software package. 

The problem considered was a typical coplanar orbit transfer from high earth orbit to 

low earth orbit using aeroassist to achieve the maneuver. The initial circular orbit is at an 

altitude of 22,366 km over the earth surface, while the low earth orbit is at an altitude of 

715.6 km. The atmospheric entry conditions resulting from this initial orbit were selected 

to be a speed of 10 km/sec and flight path angle of -6' by chming a target perbee at B 

radial distance of 6406.5 km from the earth center. 

The atmospheric exit conditions are specified by the speed of 8 km/sec and flight 

path angle of 0.01 rad or 0.57' to ensure a slightly positive flight path angle to exit the 

atmosphere. The top of the atmosphere waa selected at 127 km or a radial distance of 

6498 km. The atmospheric scale height waa set at 7.5 km with the zero altitude density 

po corresponding to 7.769 x 1O'O kg/km3. 

The vehicle parametem CD, and K were set respective values of 0.05 and 1.4. The 

maximum lii-t+drag ratio for the vehicle was 1.9. The effective mass to vehicle area ratio 

used was 300 kg/m2. 

Since the initial condition of the state, y, is specified, solving the TPBVP consists 

of finding the initial co-state values which will drive the qth order state/co-state system 

of differential equations to the desired final state. Since the co-state equations integrated 

forward, are usually unstable, the solution of TPBVP'e is a difficult problem. Significant 

convergence problems were, in fact, encountered in solving the necessary conditions. 
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The sensitivity of the optimal initial co-state vector to changes in the problem pa- 

rameters was found to be high. A consequence of this sensitivity is that the radius of 

convergence of the shooting algorithm for the problem considered was relatively low. So 

that when parameters such as the drag coefficient CD, or the scale height, @, of the at- 

mospheric density are varied by small amounts, the algorithm does not converge; this was 

found to be the case particularly at lower value8 of the scale height. Although a complete 

study was not made, multiple shooting did not significantly modify this situation. On the 

other hand, in many cases, the rate of convergence of the single shooting algorithm was 

fast, requiring under ten iterations. 

A parametric study of the optimal guidance trajectories for different linear combina- 

tions of the heating rate versus the drag terms in the cost function was performed. The 

optimal trajectories obtained are shown in Figures 25.  The proportiom of the heating 

rate (squared) and drag were varied by fixing E1 at .001 while E2 takea on the values of 

2.0, 1.0, 0.6 and 0.0. Recall that when 52 vanishes the coat function minimizes only the 

heating rate term. As E2 increases, the cost function contains greater proportions of the 

drag force term so that the shear stress on the skin is also included aa as objective. 

The basic features of aU the trajectories are similar. The speed is reduced from 10 

km/sec to 8 km/sec slowly at first, then at a higher rate until reaching approximately 8.2 

km/sec. At that point, the curve flattens considerably, slowly moving towsrds its final 

value at 8. Similarly, the flight path angle is increased until it reaches nearly + 1 . 4 O .  At 

this point, a rather sharp or decisive reversal of the trend brings the flight path angle to 

a flat curve until atmospheric exit. 

The heating rate incresses aa the vehicle dips into the atmosphere. However, it remains 

under 100 W/cm2 throughout the atmogpheric maneuver. Thm level is satisfactory, as 

much higher rates can be accommodated. The coefficient of lift starts near a value of two 

and remains there initially until it drops and settles near a negative value of -0.5. The 

trajectoriea shown here correspond to the unconstrained control case. Due to convergence 
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problems and time constraints, the constrained control cases were not obtained. 

As the proportion of the heating rate versus drag is increased, the essential character 

of the trajectory remains unchanged. The main difference is seen in the duration of the 

maneuver which increasea aa the drag term is phased out. Also note that the final flat 

portion of the trajectory is lengthened while the prior portion is slightly shortened in time. 

However, the heating rate is largely unchanged and remains safely under 100 W/cm2 in 

all the trajectories. The altitude profile tends to become slightly more flat at the end of 

the maneuver when E3 = 0. 
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6. SUMMARY 

The atmospheric portion of the trajectories for the aeroassisted coplanar orbit transfer 

have been investigated. The equations of motion for the problem are expressed usihg a 

new reduced order model using total vehicle energy, kinetic plus potential, as the indepen- 

dent variable rather than time. The order reduction is achieved analytically without an 

approximation of the vehicle dynamics. 

In this model, the problem of coplanar orbit transfer is seen as one in which a given 

amount of energy must be transferred from the vehicle to the atmosphere during the 

trajectory without overheating the vehicle. An optimal control problem is posed where 

a linear combination of the integrated square of the heating rate and the vehicle drag is 

the cod  function to be minimized. The necessary conditions for optimality are obtained; 

These result in a 4th order tw+point-boundary-value problem. 

A parametric study of the optimal guidance trajectory in which the proportion of the 

heating rate term versus the drag varies is made. The problem considers transferring the 

vehicle from an orbit at an altitude of 22,366 km to one at an altitude of 715.6 km in a 

two impulse aeroassisted maneuver. Sensitivity and convergence problems of the shooting 

algorithm are discussed. Simulations of the guidance trajectories are presented. 
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